

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at T.Nowotny@sussex.ac.uk. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq

 [image: _images/icon]Build Status [https://gen-ci.inf.sussex.ac.uk/job/GeNN/job/genn/job/master/][image: _images/coverage.svg]codecov.io [https://codecov.io/github/genn-team/genn?branch=master] [image: _images/24633934.svg]DOI [https://zenodo.org/badge/latestdoi/24633934]
[image: _images/dockerhub-images-orange.svg]Dockerhub [https://hub.docker.com/repository/docker/gennteam/genn]

GPU-enhanced Neuronal Networks (GeNN)

GeNN is a GPU-enhanced Neuronal Network simulation environment based on code generation for Nvidia CUDA.

Installation

You can download GeNN either as a zip file of a stable release, checkout the development
version using the Git version control system or use our Docker container.

Downloading a release

Point your browser to https://github.com/genn-team/genn/releases
and download a release from the list by clicking the relevant source
code button. After downloading continue to install GeNN as described in the GitHub installing section below.

Obtaining a Git snapshot

If it is not yet installed on your system, download and install Git
(http://git-scm.com/). Then clone the GeNN repository from Github

git clone https://github.com/genn-team/genn.git

The github url of GeNN in the command above can be copied from the
HTTPS clone URL displayed on the GeNN Github page (https://github.com/genn-team/genn).

This will clone the entire repository, including all open branches.
By default git will check out the master branch which contains the
source version upon which the next release will be based. There are other
branches in the repository that are used for specific development
purposes and are opened and closed without warning.

Installing GeNN

Installing GeNN comprises a few simple steps [^1] to create the GeNN
development environment:

[^1]: While GeNN models are normally simulated using CUDA on NVIDIA GPUs, if you want to use GeNN on a machine without an NVIDIA GPU, you can skip steps v and vi and use GeNN in “CPU_ONLY” mode.

	If you have downloaded a zip file, unpack GeNN.zip in a convenient
location. Otherwise enter the directory where you downloaded the Git
repository.

	Add GeNN’s ‘bin’ directory to your path, e.g. if you are running Linux or Mac OS X and extracted/downloaded GeNN to
$HOME/GeNN, this can be done with:

export PATH=$PATH:$HOME/GeNN/bin

to make this change persistent, this can be added to your login script (e.g. .profile or .bashrc) using your favourite text editor or with:

echo "export PATH=$PATH:$CUDA_PATH/bin" >> ~/.bash_profile

If you are using Windows, the easiest way to modify the path is
by using the ‘Environment variables’ GUI, which can be accessed by clicking start and searching for
(by starting to type) ‘Edit environment variables for your account’.
In the upper ‘User variables’ section, scroll down until you see ‘Path’,
select it and click ‘Edit’.
Now add a new directory to the path by clicking ‘New’ in the ‘Edit environment variable’ window e.g.:
[image: _images/path_windows.png]Screenshot of windows edit environment variable window
if GeNN is installed in a sub-directory of your home directory (%USERPROFILE% is an environment variable which points to the current user’s home directory) called genn.

	Install the C++ compiler on the machine, if not already present.
For Windows, download Microsoft Visual Studio Community Edition from
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx.
When installing Visual Studio, one should select the ‘Desktop
development with C++’ configuration.
Mac users should download and set up Xcode from
https://developer.apple.com/xcode/index.html
, Linux users should install the GNU compiler collection gcc and g++
from their Linux distribution repository, or alternatively from
https://gcc.gnu.org/index.html

	If your machine has a GPU and you haven’t installed CUDA already,
obtain a fresh installation of the NVIDIA CUDA toolkit from
https://developer.nvidia.com/cuda-downloads
Again, be sure to pick CUDA and C++ compiler versions which are compatible
with each other. The latest C++ compiler need not necessarily be
compatible with the latest CUDA toolkit.

	GeNN uses the CUDA_PATH environment variable to determine which
version of CUDA to build against. On Windows, this is set automatically when
installing CUDA. However, if you choose, you can verify which version is
selected by looking for the CUDA_PATH environment variable in the lower ‘System variables’ section of the GUI you used to configure the path:
[image: _images/cuda_path_windows.png]Screenshot of windows edit environment variable window
here, CUDA 10.1 and 11.4 are installed and CUDA 11.4 is selected via CUDA_PATH.
However, on Linux and Mac you need to set CUDA_PATH manually with:

export CUDA_PATH=/usr/local/cuda

assuming CUDA is installed in /usr/local/cuda (the standard location
on Ubuntu Linux). Again, to make this change persistent, this can
be added to your login script (e.g. .profile or .bashrc)

This normally completes the installation. Windows users must close
and reopen their command window so changes to the path take effect.

If you are using GeNN in Windows, the Visual Studio development
environment must be set up within every instance of the CMD.EXE command
window used. One can open an instance of CMD.EXE with the development
environment already set up by navigating to Start - All Programs -
Microsoft Visual Studio - Visual Studio Tools - x64 Native Tools Command Prompt. You may also wish to
create a shortcut for this tool on the desktop, for convenience.

Docker

You can also use GeNN through our CUDA-enabled docker container which comes with GeNN pre-installed.
To work with such CUDA-enabled containers, you need to first install CUDA on your host system as described above and then install docker and the NVIDIA Container Toolkit as described in https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker.
You can then build the GeNN container yourself or download it from Dockerhub.

Building the container

The following command can be used from the GeNN source directory to build the GeNN container:

make docker-build

This builds a container tagged as genn:latest so, to use this container rather than downloading the prebuild one from dockerhub, just replace gennteam/genn:latest with genn:latest in the following instructions.
By default, the container image is based off the Ubuntu 20.04 image with CUDA 11.5 provided by NVIDIA but, if you want to use a different base image, for example to use the container on a machine with an older version of CUDA, you can invoke docker build directly and specify a different tag (listed on https://gitlab.com/nvidia/container-images/cuda/blob/master/doc/supported-tags.md) via the BASE build argument. For example to build using CUDA 11.3 you could run:

docker build --build-arg BASE=11.3.0-devel-ubuntu20.04 -t genn:latest_cuda_11_3 .

Interactive mode

If you wish to use GeNN or PyGeNN interactively, you can launch a bash shell in the GeNN container using the following command:

docker run -it --gpus=all gennteam/genn:latest

You can also provide a final argument to launch a different executable e.g. /bin/sh to launch a dash shell.
NOTE PyGeNN is installed in the system Python 3 environment, the interpreter for which is launched with python3 (rather than just python) on Ubuntu 20.04.

Accessing your files

When using the GeNN container you often want to access files on your host system.
This can be easily achieved by using the -v option to mount a local directory into the container. For example:

docker run -it --gpus=all -v $HOME:/local_home gennteam/genn:latest

mounts the local user’s home directory into /local_home within the container.
However, all of the commands provided by the GeNN container operate using a non-elevated, internal user called ‘genn’ who, by default, won’t have the correct permissions to create files in volumes mounted into the container.
This can be resolved by setting the LOCAL_USER_ID and LOCAL_GROUP_ID environment variables when running the container like:

docker run -it --gpus=all -e LOCAL_USER_ID=`id -u $USER` -e LOCAL_GROUP_ID=`id -g $USER` -v $HOME:/local_home gennteam/genn:latest

which will ensure that that ‘genn’ user has the same UID and GID as the local user, meaning that they will have the same permissions to access the files mounted into /local_home.

Running Jupyter Notebooks

A Jupyter Notebook environment running in the container can be launched using the notebook command. Typically, you would combine this with the -p 8080:8080 option to ‘publish’ port 8080, allowing the notebook server to be accessed on the host. By default, notebooks are created in the home directory of the ‘genn’ user inside the container. However, to create notebooks which persist beyond the lifetime of the container, the notebook command needs to be combined with the options discussed previously. For example:

docker run --gpus=all -p 8080:8080 -e LOCAL_USER_ID=`id -u $USER` -e LOCAL_GROUP_ID=`id -g $USER` -v $HOME:/local_home gennteam/genn:latest notebook /local_home

will create notebooks in the current users home directory.

Running PyGeNN scripts

Assuming they have no additional dependencies, PyGeNN scripts can be run directly using the container with the script command. As scripts are likely to be located outside of the container, the script command is often combined with the options discussed previously. For example, to run a script called test.py in your home directory, the script command could be invoked with:

docker run --gpus=all -e LOCAL_USER_ID=`id -u $USER` -e LOCAL_GROUP_ID=`id -g $USER` -v $HOME:/local_home gennteam/genn:latest script /local_home/test.py

Usage

Sample projects

At the moment, the following C++ example projects are provided with GeNN:

	Self-organisation with STDP in the locust olfactory system (Nowotny et al. 2005 [https://doi.org/10.1007/s00422-005-0019-7]):

	with all-to-all connectivity, using built-in neuron and synapse models (for benchmarks see Yavuz et al. 2016 [https://doi.org/10.1038%2Fsrep18854])

	with sparse connectivity for some synapses, using user-defined neuron-and synapse models (for benchmarks see Yavuz et al. 2016 [https://doi.org/10.1038%2Fsrep18854])

	using BITMASK connectivity

	using synapses with axonal delays

	Pulse-coupled network of Izhikevich neurons (Izhikevich 2003 [https://doi.org/10.1109/TNN.2003.820440]) (for benchmarks see Yavuz et al. 2016 [https://doi.org/10.1038%2Fsrep18854])

	Genetic algorithm for tracking parameters in a Hodgkin-Huxley model cell

	Classifier based on an abstraction of the insect olfactory system (Schmuker et al. 2014 [https://doi.org/10.1073/pnas.1303053111])

	Cortical microcircuit model (Potjans et al. 2014 [https://doi.org/10.1093/cercor/bhs358])

	Toy examples:

	Single neuron population of Izhikevich neuron(s) receiving Poisson spike trains as input

	Single neuron population of Izhikevich neuron(s) with no synapses

	Network of Izhikevich neurons with delayed synapses

In order to get a quick start and run one of the the provided example models, navigate to one of the example project directories in the userproject sub-directory, and then follow the instructions in the README file contained within.

Simulating a new model

The sample projects listed above are already quite highly integrated examples. If you wanted to use GeNN to develop a new C++ model, you would do the following:

	The neuronal network of interest is defined in a model definition file,
e.g. Example1.cc.

	Within the the model definition file Example1.cc, the following tasks
need to be completed:

	The GeNN file modelSpec.h needs to be included,

#include "modelSpec.h"

	The values for initial variables and parameters for neuron and synapse
populations need to be defined, e.g.

NeuronModels::PoissonNew::ParamValues poissonParams(
10.0); // 0 - firing rate

would define the (homogeneous) parameters for a population of Poisson
neurons [^2].
[^2]: The number of required parameters and their meaning is defined by the
neuron or synapse type. Refer to the User manual [https://genn-team.github.io/genn/documentation/4/html/dc/d05/UserManual.html] for details. We recommend, however, to use comments like
in the above example to achieve maximal clarity of each parameter’s
meaning.

If heterogeneous parameter values are required for a particular
population of neurons (or synapses), they need to be defined as “variables”
rather than parameters. See the User manual [https://genn-team.github.io/genn/documentation/4/html/dc/d05/UserManual.html] for how to define new neuron (or synapse) types and the Variable initialisation [https://genn-team.github.io/genn/documentation/4/html/d4/dc6/sectVariableInitialisation.html] section for more information on
initialising these variables to hetererogenous values.

	The actual network needs to be defined in the form of a function
modelDefinition [^3], i.e.

void modelDefinition(ModelSpec &model);

[^3]: The name modelDefinition and its parameter of type ModelSpec&
are fixed and cannot be changed if GeNN is to recognize it as a
model definition.

	Inside modelDefinition(), The time step DT needs to be defined, e.g.

model.setDT(0.1);

\note
All provided examples and pre-defined model elements in GeNN work with
units of mV, ms, nF and uS. However, the choice of units is entirely
left to the user if custom model elements are used.

MBody1.cc shows a typical example of a model definition function. In
its core it contains calls to ModelSpec::addNeuronPopulation and
ModelSpec::addSynapsePopulation to build up the network. For a full range
of options for defining a network, refer to the User manual [https://genn-team.github.io/genn/documentation/4/html/dc/d05/UserManual.html].

	The programmer defines their own “simulation” code similar to
the code in MBody1Sim.cc. In this code,

	They can manually define the connectivity matrices between neuron groups.
Refer to the \ref subsect34 section for the required format of
connectivity matrices for dense or sparse connectivities.

	They can define input patterns or individual initial values for neuron and
/ or synapse variables.
\note
The initial values or initialisation “snippets” given in the modelDefinition are automatically applied.

	They use stepTime() to run one time step on either the CPU or GPU depending on the options passed to genn-buildmodel.

	They use functions like copyStateFromDevice() etc to transfer the
results from GPU calculations to the main memory of the host computer
for further processing.

	They analyze the results. In the most simple case this could just be
writing the relevant data to output files.

For more details on how to use GeNN, please see documentation [http://genn-team.github.io/genn/].

If you use GeNN in your work, please cite “Yavuz, E., Turner, J. and Nowotny, T. GeNN: a code generation framework for accelerated brain simulations. Scientific Reports, 6. (2016)”

A Python interface to GeNN

PyGeNN wraps the C++ GeNN API using SWIG, allowing GeNN to be used either directly from Python or as a backend for higher-level Python APIs such as PyNN [https://github.com/genn-team/pynn_genn].

Installing PyGeNN from source on Linux or Mac OSX

	Either download the latest release of GeNN and extract into your home directory or clone using git from https://github.com/genn-team/genn

	Navigate to the GeNN directory and build a dynamic library version of GeNN, directly into the PyGeNN directory using make DYNAMIC=1 LIBRARY_DIRECTORY=`pwd`/pygenn/genn_wrapper/

	Build the Python extension with setup tools using python setup.py develop command

Installing PyGeNN from source on Windows

	Ensure that you have at least Python 3.5 and Visual Studio 2015 installed (extensions for earlier versions of Python cannot be built using any versions of Visual Studio new enough to support C++11). If you are using Visual Studio 2019, you need at least Python 3.7.5. These instructions assume that the Anaconda platform was used to install Python, but it should be possible to install PyGeNN using suitable versions of Python installed in different way (please let us know if you suceed in doing so!)

	This process requires a command prompt with the environment correctly configured for both Visual Studio and Anaconda. To create one, launch an “x64 Native Tools Command Prompt” from your chosen version of Visual Studio’s start menu folder and activate your chosen version of Anaconda by running the activate.bat in its Scripts directory. For example, if your user is called “me” and Anaconda is installed in your home directory, you would run c:\Users\Me\Anaconda3\Scripts\activate.bat c:\Users\Me\Anaconda3.

	From this command prompt, install SWIG using the conda install swig command.

	Navigate to the GeNN directory and build GeNN as a dll using msbuild genn.sln /t:Build /p:Configuration=Release_DLL (if you don’t have CUDA installed, building the CUDA backend will fail but it should still build the CPU backend).

	Copy the newly built DLLs into pygenn using copy /Y lib\genn*Release_DLL.* pygenn\genn_wrapper

	Build the Python extension with setup tools using python setup.py develop command

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_images/path_windows.png
Environment Variables

User variables for jamie
Variable Value
Path C:\Users\jamie\AppData\Locah Microsoft\WindowsAppsi.CAUsers\..
Edit.. Delete
System variables
Variable Value
Edit.. Delete

Edit environment variable

‘%USERPROFILES4\AppData) Local\Microsoft\WindowsApps. New
‘%USERPROFILES%\genn)\bin
- - Edit
Browse...
Delete
MoveUp
Move Down
Edittext...
oK Cancel
==

_images/cuda_path_windows.png
Environment Variables

User variables for jamie
Variable Value
Edit..
System variables
Variable Value
CUDA_PATH C:\Program Files\NVIDIA GPU Computing Toolkit\ CUDAWT1.4
CUDA_PATH V10_1 C:\Program Files\NVIDIA GPU Computing Toolkit\ CUDAW10.1
CUDA_PATH V11 4 C:\Program Files\NVIDIA GPU Computing Toolkit\ CUDA\WT1.4
New... Edit..

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/up.png

